Reconstructing contact network parameters from viral phylogenies
نویسندگان
چکیده
Models of the spread of disease in a population often make the simplifying assumption that the population is homogeneously mixed, or is divided into homogeneously mixed compartments. However, human populations have complex structures formed by social contacts, which can have a significant influence on the rate of epidemic spread. Contact network models capture this structure by explicitly representing each contact which could possibly lead to a transmission. We developed a method based on approximate Bayesian computation (ABC), a likelihood-free inference strategy, for estimating structural parameters of the contact network underlying an observed viral phylogeny. The method combines adaptive sequential Monte Carlo for ABC, Gillespie simulation for propagating epidemics though networks, and a kernel-based tree similarity score. We used the method to fit the Barabási-Albert network model to simulated transmission trees, and also applied it to viral phylogenies estimated from ten published HIV sequence datasets. This model incorporates a feature called preferential attachment (PA), whereby individuals with more existing contacts accumulate new contacts at a higher rate. On simulated data, we found that the strength of PA and the number of infected nodes in the network can often be accurately estimated. On the other hand, the mean degree of the network, as well as the total number of nodes, was not estimable with ABC. We observed sub-linear PA power in all datasets, as well as higher PA power in networks of injection drug users. These results underscore the importance of considering contact structures when performing phylodynamic inference. Our method offers the potential to quantitatively investigate the contact network structure underlying viral epidemics.
منابع مشابه
Phylodynamics on local sexual contact networks
Phylodynamic models are widely used in infectious disease epidemiology to infer the dynamics and structure of pathogen populations. However, these models generally assume that individual hosts contact one another at random, ignoring the fact that many pathogens spread through highly structured contact networks. We present a new framework for phylodynamics on local contact networks based on pair...
متن کاملHow the Dynamics and Structure of Sexual Contact Networks Shape Pathogen Phylogenies
The characteristics of the host contact network over which a pathogen is transmitted affect both epidemic spread and the projected effectiveness of control strategies. Given the importance of understanding these contact networks, it is unfortunate that they are very difficult to measure directly. This challenge has led to an interest in methods to infer information about host contact networks f...
متن کاملMeasuring Asymmetry in Time-Stamped Phylogenies
Previous work has shown that asymmetry in viral phylogenies may be indicative of heterogeneity in transmission, for example due to acute HIV infection or the presence of 'core groups' with higher contact rates. Hence, evidence of asymmetry may provide clues to underlying population structure, even when direct information on, for example, stage of infection or contact rates, are missing. However...
متن کاملTitle : A weighted least - squares approach for inferring phylogenies from incomplete distance matrices
Motivation: The problem of phylogenetic inference from data sets including incomplete or uncertain entries is among the most relevant issues in systematic biology. In this paper, we propose a new method for reconstructing phylogenetic trees from partial distance matrices. The new method combines the usage of the four-point condition and the ultrametric inequality with a weighted least-squares a...
متن کاملEvolutionary analysis of whole-genome sequences confirms inter-farm transmission of Aleutian mink disease virus.
Aleutian mink disease virus (AMDV) is a frequently encountered pathogen associated with mink farming. Previous phylogenetic analyses of AMDV have been based on shorter and more conserved parts of the genome, e.g. the partial NS1 gene. Such fragments are suitable for detection but are less useful for elucidating transmission pathways while sequencing entire viral genomes provides additional info...
متن کامل